CS1 Plugin Release 1.0.1 Command Reference

WARNING : These commands are subject to change without Notice! You are using this software at your own RISK. CreatureSoft nor Pegasus Research assume any liability for any damages or loss of data.

* Development Notes *

Greetings MMB developers. This is the 1st official release of the CS1 MMB DLL. My goal in developing this product has been to provide MMB with a rich and powerful extended command set that will allow developers to utilize MMB as a full development language. How successful have I been? That is for you to decide.

If you have any suggestions, comments, or functions that you think I should include in future releases, Please E-mail me : creature@calibre.net

* Legal Use Information *

Non-commercial use

The use of these "PlugIns" in a non commercial product does NOT require a license fee. A non commercial product is defined as a program/product where no monitary funds or services (barter) are exchanged (I.E. FREEWARE). The terms and conditions for use in a non-commercial project require that the provider/programmer disclose the inclusion of the CreatureSoft products by including a statement of copyright and web page address with the product.

Example :"Includes CS1 (c)2000 CreatureSoft.- www.hell.calibre.net."

Commercial use

Commercial use of these products require licenseing fee. You may not sell or resell CreatureSoft products without paying a licensing fee. Licenses are granted on a "Per Title" fee. What this means is that if you publish a title called "My MMB Program" and wish to license the products for use with this product, you will pay a 1 time fee for that product title. Since this license is granted "PER TITLE" if you came out with "Another MMB program", you would be required to purchase a license for that title as well. For information on licensing contact : creature@calibre.net

* Binding Commands *

Binding commands are used to embed MMB project files into other MMB programs child windows, These commands are usefull with or without the cs_VBPP.DLL. There are some considerations that must be taken into account when not using the cs_VBPP.dll to provide control in theMain MMB project, For example : You must manually send a command to kill the the embed program before you exit the program or change pages. Additionaly, this program is unable to issue the commands to fix the refresh problems to the parent MMB module.

NOTE : HWND's are handles to auctual windows.

GetHandle

	Returns the programs current window handle as a string

	PluginRun("PlugIn","GetHandle")

	PluginGet("PlugIn","handle$")

	OR

	PluginGet("PlugIn","handle")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : HWND number as "String"

	Integer : HWND number as "Integer"

f_getHWND

	Opens and reads an HWND file created by cs_VBPP.dll.

	Returns the handle as an intiger to MMB or zero if failed.

	file$='<SrcDir>\data.hwnd'

	PluginSet("PlugIn","file$")

	PluginRun("PlugIn","f_getHWND")

	PluginGet("PlugIn","HWND")

	Variables sent from MMB

	String : Valid file name and path

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : success = HWND number, Failure = 0

FindHwnd

	Gets the HWND of an open program by window name..

	Returns the handle as an intiger to MMB or zero if failed.

	PluginSet("PlugIn","string$")

	PluginRun("PlugIn","FindHwnd")

	PluginGet("PlugIn","HWND")

	Variables sent from MMB

	String : Valid window name

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : success = HWND number, Failure = 0

SndMMBMsg

	Sends a keyboard event to another MMB program. Can be used to

	trigger keyboard scripts in other MMB programs (remote control).

	Only WM_CHAR characters are valid, and no shift keys or control

	messages are sent.

	PluginSet("PlugIn","string$")

	PluginSet("PlugIn","HWND")

	PluginRun("PlugIn","SndMMBMsg")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Valid character: string [0]

	Integer : HWND of MMB program to recieve message

	Variables Returned to MMB

	String : N/A

	Integer : Success = 1, Failure = 0

Bind

	Binds the MMB application into the applications window, whos

	HWND is specified in the HWND variable.

	

	If setX and setY have been set, the embeded program will be positioned

	at those coordinates in the new parent window.

	

	PluginSet("PlugIn","HWND")

	PluginRun("PlugIn","Bind")

	Variables sent from MMB

	String : N/A

	Integer : Valid Windows Handle Number

	Variables Returned to MMB

	String : N/A

	Integer : N/A

setX

	Sets the X offset for the application to be bound into another program when issuing the

	"Bind" command. On DLL initalization this value has been set to zero.

	PluginSet("PlugIn","Xposn")

	PluginRun("PlugIn","setX")

	Variables sent from MMB

	String : N/A

	Integer : X Position of window

	Variables Returned to MMB

	String : N/A

	Integer : N/A

setY

	Sets the Y offset for the application to be bound into another program when issuing the

	"Bind" command. On DLL initalization this value has been set to zero.

	PluginSet("PlugIn","Yposn")

	PluginRun("PlugIn","setY")

	Variables sent from MMB

	String : N/A

	Integer : Y Position of window

	Variables Returned to MMB

	String : N/A

	Integer : N/A

* Invisible Functions *

These functions make the program invisible to the user. The program will continue to operate normally in the hidden state just as it would if it were visible. But, once a program is invisible you can not access its controls. These can be a very dangerous functions since you can easily loose a running program during development. (For testing, I use a script timer to make a program visible after 10 mins just in case I loose it!)

InvisibleP

	This command will make the program INVISIBLE.	

	PluginRun("PlugIn","InvisibleP")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A

VisibleP

	This command will make the program VISIBLE after calling the "InvisibleP" function.

	Note: making Multiple calls to this function wont cause any problems for the program.

	

	PluginRun("PlugIn","VisibleP")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A

* File I/O Commands *

High Level file I/O adds a new demension to MMB as a programming language. To simplify matters at the moment I have chosen to support the STREAM based format. This will provide "Sequential" reads and writes to files. The READ file commands are independent of the WRITE file commands and have seperate NON-STATIC buffers assigned so they may be used simultaniously. (changing pages WILL re-initalize the buffers!!) It is possible to open one file for reading and another for writing and to copy through from one to another on a line by line basis.

f_OpenWrite

	Opens the specified file for writing using the WRITE buffer.

	If the file already exists, it is deleted and recreated

	PluginSet("Plugin","file$")

	PluginRun("PlugIn","f_OpenWrite")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Name and path of file

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : Success = 1 , Failure = 0;

f_OpenApend

	Opens the specified file for writing using the WRITE buffer. If the file already exists,

	it is not deleted and is opened in APPEND mode allowing you to add to the end of

	the file without affecting the current contents.

	PluginSet("Plugin","file$")

	PluginRun("PlugIn","f_OpenApend")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Name and path of file

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : Success = 1 , Failure = 0;

f_OpenRead

	Opens the specified file for reading using the READ buffer.

	PluginSet("Plugin","file$")

	PluginRun("PlugIn","f_OpenRead")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Valid name and path of file

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : Success = 1 , Failure = 0;

f_Read

	

	Reads from the file which was opened using the f_OpenRead command.

	Call this function recursivly to read multiple strings from the file.

	(Note: the last line read from a file will always be a blank line and the

	next call to the read function will return a 0 value for status)

	PluginRun("PlugIn","f_Read")

	PluginGet("Plugin","TheData$")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : The data read from the file.

	Integer : Success = 1 , Failure = 0;

f_Write

	Writes the string passed to the file which was opened using either the

	f_OpenWrite or the f_OpenAppend command. Call this function recursivly

	to write multiple strings to the file.

	PluginSet("Plugin","TheData$")

	PluginRun("PlugIn","f_Write")

	Variables sent from MMB

	String : The data to be written to the file

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A

f_CloseRead

	Closes the open read file and the READ buffer.

	The auctual status from the systems close function is returned

	PluginRun("PlugIn","f_CloseRead")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : auctual value from file close function.

f_CloseWrite

	Closes the open write file and flushes and closes the READ buffer.

	The auctual status from the systems close function is returned

	PluginRun("PlugIn","f_CloseWrite")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : auctual value from file close function.

f_Delete

	Delete a file.

	PluginSet("PlugIn","file$")

	PluginRun("PlugIn","f_Delete")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Valid file name and path

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : auctual value from unlink function.

f_OpenDir

	Opens a directory. The files$ should include the path and the mask.

	 This function will return the 1st file name to match the mask within

	the target directory and its file size. All standard masks are supported.

	To retrieve subsiquent names use the f_GetDir command.

	

	file$='c:*.mp3'

	PluginSet("PlugIn","file$")

	PluginRun("PlugIn","f_OpenDir")

	PluginSet("PlugIn","filename$")

	PluginGet("PlugIn","filesize")

	Variables sent from MMB

	String : Valid file name and mask

	Integer : N/A

	Variables Returned to MMB

	String : Filename matching mask

	Integer : Size of the file , -1 = failure

f_GetDir

	Gets next directory entry matching the mask criteria

	set in the f_OpenDir command. (This function will

	automatically close the directory upon error)

	PluginRun("PlugIn","f_GetDir")

	PluginSet("PlugIn","filename$")

	PluginGet("PlugIn","filesize")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : Filename matching mask

	Integer : Size of the file , -1 = failure (completed)

f_CloseDir

	Closes the directory opened with the f_OpenDir command

	PluginRun("PlugIn","f_CloseDir")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A.

MakeDir

	Creates a single directory entry. Recursive calls can be made

	to this call to add to the tree. Directory entry above final

	directory must exist. (will not recursivly create from a single string).

	PluginSet("PlugIn","file$")

	PluginRun("PlugIn","MakeDir")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Valid path name and new directory name

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : 1 = Success, 0 = Failure.

RemoveDir

	Removes a single directory entry. Recursive calls can be made

	to this call to remove from the tree. Directorys must be empty!

	PluginSet("PlugIn","file$")

	PluginRun("PlugIn","RemoveDir")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : Valid path name and directory name

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : 1 = Success, 0 = Failure.

* String Commands *

String minipulation functions will add more flexibility to MMB as a programming language.

SaveClip

	Saves the string to the clipboard.

	PluginSet("PlugIn","text$")

	PluginRun("PlugIn","SaveClip")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : A valid string

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : 1 = Success, 0 = Failure

GetClip

	Gets the clipboard contents (only if it is a string).

	PluginRun("PlugIn","GetClip")

	PluginGet("PlugIn","text$")

	PluginGet("PlugIn","status")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : A valid string

	Integer : 1 = Success, 0 = Failure

s_StrLen

	Get number of characters in a string.

	PluginSet("PlugIn","string$")

	PluginRun("PlugIn","s_StrLen")

	PluginGet("PlugIn","length")

	Variables sent from MMB

	String : A string

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : Length of string

s_NewChar

	Sets new characterto be used by replace functions.

	PluginSet("PlugIn","string$[0]")

	PluginRun("PlugIn","s_NewChar")

	

	Variables sent from MMB

	String : string[0] (single character)

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A

s_ReplaceChar

	This function will change the character at a specified position to

	whatever character you saved with the s_NewChar command..

	The function returns a new string .

	** Must be done 1st

	PluginSet("PlugIn","string$[0]")

	PluginRun("PlugIn","s_NewChar")

	PluginSet("PlugIn","oldstring$")

	PluginSet("PlugIn","position")

	PluginRun("PlugIn","s_ReplaceChar")

	PluginGet("PlugIn","newstring$")

	Variables sent from MMB

	String : A string containing characters

	Integer : Position of the character to change in the string (1 - ???)

	Variables Returned to MMB

	String : The new string.

	Integer : N/A

s_GetStrChar

	This function is designed to get a single character back from a string

	You specify which position number you wish from the string

	and the function returns the character at that location

	PluginSet("PlugIn","string$")

	PluginSet("PlugIn","charnum")

	PluginRun("PlugIn","s_GetStrChar")

	PluginGet("PlugIn","character$")

	Variables sent from MMB

	String : A string containing characters

	Integer : Number of the character to return in string (1 - ???)

	Variables Returned to MMB

	String : The Single Character from the string position

	Integer : N/A

s_SetStrTerm

	This function is designed to terminate a string at a position.

	You specify which position you wish to terminate the string

	The function returns the new string terminated at the

	position number specified.

	PluginSet("PlugIn","oldstring$")

	PluginSet("PlugIn","position")

	PluginRun("PlugIn","s_SetStrTerm")

	PluginGet("PlugIn","newstring$")

	Variables sent from MMB

	String : A string containing characters

	Integer : Number of the position to terminate the string (1 - ???)

	Variables Returned to MMB

	String : The new string terminated at the position you specified.

	Integer : N/A

s_SetDelimiter

	Sets the delimiter character that will be used in the

	s_GetCDelimited & s_GetCDelimitedNQ functions.

	By default this value is set to ",". only the 1st character

	of the string will be used.

	PluginSet("PlugIn","string$")

	PluginRun("PlugIn","s_SetDelimiter")

	Variables sent from MMB

	String : A string [0]

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A

s_GetCDelimited

	This function is designed to extract a sub string from a comma

	deliniated file. The comma_number will indicate the ending point

	for the substring extraction. The starting point will be the preceding

	comma or the begining of the string if the comma_number is 1.

	If there is no data between 2 commas then a ZERO length string will

	be returned. If you ask for a number outside the range of the string

	a ZERO will also be returned.

	** optional if other than ","

	PluginSet("PlugIn","string$")

	PluginRun("PlugIn","s_SetDelimiter")

	**

	PluginSet("PlugIn","comma_deliniated_string$")

	PluginSet("PlugIn","comma_number")

	PluginRun("PlugIn","s_GetCDelimited")

	PluginGet("PlugIn","new_string$")

	PluginGet("PlugIn","new_string_length")

	Variables sent from MMB

	String : A comma deliniated string

	Integer : Number of the COMMA to read until (1 - ???)

	Variables Returned to MMB

	String : The extracted string

	Integer : The extracted string length

s_GetCDelimitedNQ

	This function is designed to extract a sub string from a comma

	deliniated file AND REMOVE (") marks.

	** optional if other than ","

	PluginSet("PlugIn","string$")

	PluginRun("PlugIn","s_SetDelimiter")

	**

	PluginSet("PlugIn","comma_deliniated_string$")

	PluginSet("PlugIn","comma_number")

	PluginRun("PlugIn","s_GetCDelimitedNQ")

	PluginGet("PlugIn","new_string$")

	PluginGet("PlugIn","new_string_length")

	Variables sent from MMB

	String : A comma deliniated string

	Integer : Number of the COMMA to read until (1 - ???)

	Variables Returned to MMB

	String : The extracted string

	Integer : The extracted string length

s_SetMidString

	This function sets the starting position for the s_GetMidString Function.

	The value can be from 1 to the length of the string and indicates the starting

	point for the portion of the string to be extracted.

	

	PluginSet("PlugIn","start_position")

	PluginRun("PlugIn","s_SetMidString")

	

	Variables sent from MMB

	String : N/A

	Integer : Starting position in the string

	Variables Returned to MMB

	String : N/A

	Integer : N/A

s_GetMidString

	This function sets the input string and the number of characters

	to extract from your source string, then it creates a new string

	containing the section specified. See s_SetMidString.

	PluginSet("PlugIn","Number_of_characters")

	PluginSet("PlugIn","The_String$")

	PluginRun("PlugIn","s_GetMidString")

	PluginGet("PlugIn","The_New_String$")

	

	Variables sent from MMB

	String : A Valid String

	Integer : Number Of Characters To Extract

	Variables Returned to MMB

	String : The Extracted Portion Of The String

	Integer : 1 = Success, 0 = Failure

s_ToLower

	This function converts a string to lower case characters	

	PluginSet("PlugIn","old_string$")

	PluginRun("PlugIn","s_ToLower")

	PluginGet("PlugIn","new_string$")

	

	Variables sent from MMB

	String : A Valid String

	Integer : N/A

	Variables Returned to MMB

	String : The New Lowercase String

	Integer : N/A

s_ToUpper

	This function converts a string to upper case characters	

	PluginSet("PlugIn","old_string$")

	PluginRun("PlugIn","s_ToUpper")

	PluginGet("PlugIn","new_string$")

	

	Variables sent from MMB

	String : A Valid String

	Integer : N/A

	Variables Returned to MMB

	String : The New Uppercase String

	Integer : N/A

* Math Commands *

	None Yet

* System Commands *

Pause

	Pause for a specified ammount of time (in Milliseconds)

	PluginSet("PlugIn","millisecs")

	PluginRun("PlugIn","Pause")

	Variables sent from MMB

	String : N/A

	Integer : Number of milliseconds to pause

	Variables Returned to MMB

	String : N/A

	Integer : N/A

* GUI Commands *

SetPos

	Moves the program window to the position specified using the SetX & SetY commands.

	PluginRun("PlugIn","SetPos")

	Variables sent from MMB

	String : N/A

	Integer : N/A

	Variables Returned to MMB

	String : N/A

	Integer : N/A

setX

	Sets the X position for the window. On DLL initalization this value has been set to zero.

	PluginSet("PlugIn","Xposn")

	PluginRun("PlugIn","setX")

	Variables sent from MMB

	String : N/A

	Integer : X Position of window

	Variables Returned to MMB

	String : N/A

	Integer : N/A

setY

	Sets the Y position for the window. On DLL initalization this value has been set to zero.

	PluginSet("PlugIn","Yposn")

	PluginRun("PlugIn","setY")

	Variables sent from MMB

	String : N/A

	Integer : Y Position of window

	Variables Returned to MMB

	String : N/A

	Integer : N/A

Send Bug Reports to : creature@calibre.net

©2000 Pegasus Research - Creature Soft

